Homework 4, due 2/27
Only your four best solutions will count towards your grade.

1. Define the form

$$
\omega=\frac{\sqrt{-1}}{2} \sum_{i=1}^{n} d z_{i} \wedge d \bar{z}_{i}
$$

on \mathbf{C}^{n}, i.e. the associated (1,1)-form of the Euclidean metric. Find a function $\phi: \mathbf{C}^{n} \rightarrow \mathbf{R}$ satisfying $\omega=\sqrt{-1} \partial \bar{\partial} \phi$.
2. Show that if $u: \mathbf{C}^{n} \rightarrow \mathbf{R}$ satisfies $\partial \bar{\partial} u=0$, then u is the real part of a holomorphic function.
3. Define the form

$$
\omega=\sqrt{-1} \partial \bar{\partial} \log \left(1+\|z\|^{2}\right)
$$

on \mathbf{C}^{n}. Show that ω is the associated $(1,1)$-form of a metric g, i.e. that the corresponding symmetric tensor g defines a positive definite inner product. Hint: by symmetry it is enough to check this along a coordinate axis.
4. Show that \mathbf{C}^{n} does not have any compact complex submanifolds of positive dimension.
5. Let $f: U \rightarrow \mathbf{C}$ be a smooth function, where $U \subset \mathbf{C}^{n}$ is an open set. Let $\Gamma_{f} \subset \mathbf{C}^{n+1}$ denote the graph of f. Show that f is holomorphic if and only if at each point $p \in \Gamma_{f}$ the tangent space $T_{p} \Gamma_{f}$ is a complex subspace of \mathbf{C}^{n+1}.
6. Let X be a complex manifold, and $Y \subset X$ a smooth (real) submanifold. Show that X is a complex submanifold if and only if each tangent space $T_{p} Y \subset T_{p} X$ for $p \in Y$ is invariant under the complex structure map $I: T_{p} X \rightarrow T_{p} X$.

